
How ElasticBox automates CI/CD

Overview

ElasticBox is a cloud application manager platform committed to accelerating software delivery to any
cloud. Customers like Netflix, Genentech, DeNA, Splunk, Rightster run ElasticBox to deploy workloads faster
and more frequently with reduced risk of failure. Their DevOps teams take advantage of the platform’s self-
service catalog, collaboration over deployment artifacts, unified configuration management, infrastructure
policy control, and CI/CD (continuous integration, continuous delivery). To operate at scale, ElasticBox
practices one of its core values and is a huge believer in “eating its own dog food” as a way to continually test
and demonstrate the platform. So how does ElasticBox automate its software development lifecycle from
delivery to release? This case study showcases how ElasticBox does it using the ElasticBox Jenkins plugin.

The Challenge

Shipping software involves complex hurdles. Developers maintain source code in a version control system,
which is GitHub in our case. We must integrate GitHub with dev, test, staging, and production build
environments where every code update deploys seamlessly. Before the code moves to the next phase, say
from dev to test, it must pass unit and end-to-end automated tests. The build environments must match
the production environment as closely as possible to catch bugs before primetime. Maintaining a uniform,
scalable environment across dev, test, staging, and production is not easy. Even a patch, platform, library,
or runtime update introduces deployment complexity. Imagine automating builds across any cloud.

Besides managing a complex development lifecycle, ElasticBox specifically wanted to tackle these
deployment pain points:

•	 Too many manual steps. In Jenkins jobs, we wrote deployments in command line scripts, which involved
too many manual steps and integration points.

•	 Long build times. Code updates in development, test, staging, and production environments took too
long to launch or terminate on demand.

•	 Cost and waste of cloud resources. Idle and orphaned machines and resources, when not in use, inflated
cloud costs.

•	 Labor intensive lifecycle management. Operations engineers labored days or weeks to manage
application lifecycles across multiple Jenkins jobs resulting in a time and cost overhead.

https://wiki.jenkins-ci.org/display/JENKINS/ElasticBox%2BCI

Automating with the ElasticBox Jenkins plugin

ElasticBox achieved full automation as well as managed delivery and release processes in one place using the
ElasticBox Jenkins plugin. Here’s how we did it.

Simply put, the ElasticBox Jenkins plugin integrates Jenkins with ElasticBox. What that means is in Jenkins,
the plugin surfaces the full CI/CD deployment and lifecycle management features of ElasticBox.

Our development, test, and staging environments resemble production environments as close as possible to
lower the risk of product defects. In the development environment, for example, we deploy the same stack as
production. We achieved this last year using ElasticBox, the plugin, and Git. As GitHub is our source code and
version control system, we integrate with GitHub plugins.

Whenever a developer submits or updates a pull request, Jenkins launches a test instance using a Jenkins
slave via ElasticBox. When we merge and close a pull request, the plugin instructs Jenkins to delete any
attached resources. In this way, we avoid consuming unnecessary cloud resources and adding up cloud bills.

In staging and production too, we deploy and update build environments using Jenkins slaves. Through
ElasticBox, the slaves build workloads pre-defined in boxes. Since boxes are infrastructure independent, we
attach infrastructure policies to run the builds on any cloud such as AWS, Google Cloud, vSphere, Azure,
and more.

We use ElasticBox build steps in the plugin such as deploy, manage, and update to automate the
application service lifecycle fully. With the deploy build step, we launch and provision slaves and build
environments. It is in these environments that Jenkins installs the application packages. Through the
manage build step, we manage the application service lifecycle. It lets us reconfigure, reinstall, start, stop,
or terminate an instance. Here again, if an instance already exists, we don’t spin up unnecessary machine
resources thus saving on additional cloud costs.

To learn more about how ElasticBox can help
you catalyse the DevOps movement in your
organization or to schedule a custom demo,
please email us at info@elasticbox.com.

Benefits

Integrating the plugin with ElasticBox and Jenkins helped us achieve speed, frequency, and reduced-risk
deployments in a CI/CD pipeline. Here are the top four benefits of the plugin:

•	 Faster deploy time. Build environments and slaves launched to any cloud in 30% less time. With 20-30
deployments a day, we saved nearly 100 hours a month of manual overhead.

•	 Increased deployment frequency. In six months, we quadrupled the number of deployments. We built
and tested our product 7000 times, on an average of 20-30 times a day. We deployed about 8-10 times
per day to staging and shipped about once a week to production.

•	 Cost-savings on cloud resources. The plugin optimizes resource use and cuts cloud costs by killing
idle Jenkins slaves and terminating test resources no longer used. For a small operations team, the cost
savings ran into several thousand dollars last year.

•	 Simpler application service lifecycle management. The plugin manages the entire software development
lifecycle, from a developer committing code and testing it to operations pushing it into staging and
production, seamlessly through Jenkins and the ElasticBox build steps. By automating with the plugin and
ElasticBox, we saved time, resources, and the overhead of writing and maintaining tons of scripts directly
in the Jenkins jobs. Without ElasticBox and the plugin, we could not have achieved complete automation.

Next Steps

To learn how ElasticBox can automate your CI/CD
workflows end-to-end, see the ElasticBox Jenkins plugin,
try it for free, or contact us for a demo.

To learn more about how ElasticBox can help
you catalyse the DevOps movement in your
organization or to schedule a custom demo,
please email us at info@elasticbox.com.

For a high-growth software company like

ElasticBox, velocity beats everything. In order to

compete against large established companies

and to innovate for our customer needs, working

at scale is an imperative.

 — Carol Carpenter, CEO, ElasticBox

https://wiki.jenkins-ci.org/display/JENKINS/ElasticBox%2BCI
mailto:info@elasticbox.com

