
W H I T E P A P E R

6 Best Practices to
Cloud Enable Your Apps
Expand Your Product Portfolio & Advance Your Software as a Service Offering

p2

www.tier3.com | 1.877.388.4373 | sales@tier3.com 2

CONTENTS

Introduction 3

Understanding Your Objectives for SaaS 4

Context: Application Hosting vs. Software as a Service 5

The Six Best Practices 6

#1 Verify the Architecture 6

#2 Find the Right Hosting Environment 7

#3 Provide Registration, Management and Billing Services 8

#4 Create Application Templates 8

#5 Monitor Performance and Scale Environments 10

#6 Perform Data Backups 10

Conclusion 11

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p3

www.tier3.com | 1.877.388.4373 | sales@tier3.com 3

INTRODUCTION

Independent software vendors (ISVs) are increasingly turning to Software-

as-a-Service (SaaS) as an alternative to traditional on-premise deployment.

SaaS is hot! According to Gartner, 95% of organizations are planning to grow

or maintain their SaaS investment. The influential technology blog GigaOm

notes that the valuation of SaaS companies is skyrocketing compared to

more traditional enterprise software vendors. If you currently offer your ap-

plication on-premise, on dedicated physical servers, you are likely exploring

the possibility of SaaS-enabling your product. And, if you’re not, you probably

should be.

Our goal with this paper is to share some proven best practices we have de-

veloped for SaaS enablement. There are a myriad of recommended practices

for SaaS, but these six are likely the most relevant for your business. You can

grab it and go! We have arrived at these practices after working with many

ISVs on the process of taking an established on-premise application and tran-

sitioning it to a working, financially viable SaaS offering. The paper reviews

technological and business objectives for SaaS enabling your application.

Then, after setting context by contrasting SaaS with its ancestor, the applica-

tion service provider (ASP) model, we go over the six most relevant technical

best practices. These include verifying architecture, finding the right hosting

environment, and setting up registration, management and billing, creating

application templates and management practices such as performing data

backups.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p4

www.tier3.com | 1.877.388.4373 | sales@tier3.com 4

UNDERSTANDING YOUR OBJECTIVES
FOR SAAS

SaaS-enabling your application will require an investment of time and re-

sources. Such an undertaking should be done with clear objectives in

view. Though everyone’s goals for SaaS will be different, in general, a suc-

cessful SaaS project aims to achieve an interlocking set of business and

technological objectives. In business terms, SaaS is about enabling your

clients – including future prospects – to take advantage of an Internet-based

software delivery model. SaaS typically involves renting access to your ap-

plication, in contrast to the traditional license-plus-maintenance model that

most ISVs have used for years. The business advantage of SaaS is in its flex-

ibility. SaaS makes it simpler and faster to on-board new clients. It can also

be profitable to work with SaaS customers who are smaller than those that

usually buy an on-premise version of your application. As a result, your busi-

ness can scale faster and benefit from an expanded pool of clients. From a

cost perspective, SaaS has the potential to drive increased profitability by

streamlining infrastructure costs. However, this potential is not always realized

by ISVs.

The technological objectives of SaaS should align with both revenue and

cost management goals. The architectural decisions you make, the way you

establish multi-tenancy and data, the hosting environment and so forth are all

critical to ensuring that SaaS is a profitable path to growing your ISV business.

For example, your ability to scale infrastructure efficiently will translate into

smooth, low-cost on-boarding of new clients. Similarly, your ability to template

applications will enable you to replicate your success with multiple versions of

your application. Alternatively, automated monitoring and backups help you

manage an expanding SaaS operation without the corresponding need to

add support resources.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p5

www.tier3.com | 1.877.388.4373 | sales@tier3.com 5

CONTEXT: APPLICATION HOSTING VS. SOFTWARE AS A SERVICE

What does it mean to “SaaS your app”? Making a con-

ventional software application available on a SaaS basis

is a deceptively simple process. You might be tempted to

think of SaaS as just a new flavor of the old Application

Server Provider (ASP) business model. It’s not. One

can become confused when so many products mind-

lessly stamp “cloud!” on their labels. In essence, ASPs

operate software environments for customers while SaaS

vendors rent their software in a scalable, self-service

environment. To be fair, SaaS is an extension of the ideas

introduced by ASPs, but there are fundamental differ-

ences between ASP and SaaS that affect their respective

implementation practices. The following is a brief com-

parison between the two software delivery models.

ASP SaaS

Software

Ownership

Software is either (1) owned by each customer

and operated by ASP, or (2) owned by ASP

with the environment provisioned for each

customer.

Software created and maintained by SaaS

vendor.

Software

Architecture

Typically Web-based software built to scale

for single customer.

Frequently built as series of decoupled com-

ponents that cleanly scale for all customers.

Multi-tenancy Each customer resides in its own

environment, thus making maintenance time-

consuming for ASP.

Each customer runs on shared infrastructure

and often on the same software instance.

Infrastructure

Abstraction

Customer sometimes has direct access to

machines that run the software.

Customers only have access to the software

itself.

Scalability Favors a “scale up” strategy of providing more

resources to existing hardware.

Built to scale up and out to accommodate user

growth.

Cost Structure Pay annual or long-term contract for hosting

services.

Leverage per-user, pay-as-you go model

where annual contracts are offered but not

required.

Customization Limited “free” customizations as each change

increases support costs. Changes to the data

model, business logic or security model are

typically executed by the ASP.

Per-customer configurations and customiza-

tions that survive upgrades. Changes to data

structure, business logic or security model are

performed by the customer themselves.

Maintenance Software upgrades or patches require envi-

ronment downtime.

SaaS software often requires no scheduled

maintenance times as rolling updates are

performed.

Integration

Strategy

Requires VPNs or scheduled, bulk data

transfers.

Most SaaS products have published APIs for

interfacing with the system.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p6

www.tier3.com | 1.877.388.4373 | sales@tier3.com 6

THE SIX BEST PRACTICES

Keeping in mind your business and technological objectives, along with the

ASP vs. SaaS context in mind, let’s review our top six proven practices we

have developed working with ISV clients over the last five years. Bear in

mind that the core principle that SaaS should ideally be “self-service”. SaaS

should not require users to call up a service provider in order to implement

any changes. By exposing supported, user-driven configuration in your archi-

tecture, you make self-service a reality and keep application support costs

down. The following practices are far from exhaustive. However, they cover

the major areas that we have found to be critical with success in SaaS en-

abling an application.

#1 Verify the Architecture

Before an application can be delivered in a SaaS style, it has to be evaluated

for architectural readiness.

Stateless Web servers - In order to cleanly scale horizontally and provision

new machines, it’s essential that you build Web applications that don’t main-

tain any local state. The Web servers should rely on some sort of shared

database for their configuration. To offer a cloud-friendly application, the

architecture must support no-touch elasticity. This cannot happen if you have

Web servers with local state.

No hard-coded connections - If your application has Web servers with hard

coded values (e.g. IP addresses) for database connection strings or server-

to-server communication, you’ll have problems when you migrate your

application to the cloud. You want to make sure that each individual layer

of your application can scale independently without breaking connections

between the tiers.

Extensible data model - This comes into play if you foresee subscriber-

specific customizations taking place. Should customers be able to extend

existing data objects, add new ones, or apply unique validation logic? If so,

then it makes sense to design the data repository in such a way that customer

extensions can take place.

Multi-tenant support - This isn’t as straightforward as it may seem. One of the

key principles associated with SaaS is putting multiple customers, or tenants,

on a single server or software instance. The benefit of this model is that

you gain operational efficiencies because you don’t have to maintain each

customer’s environment uniquely. That said, multi-tenancy could happen at

multiple layers of your application. Three viable options include:

•	Provision unique Web applications and databases for each customer.

While the underlying infrastructure may be shared among tenants, it is

feasible to carve out unique application environments for each customer.

The benefits include physical separation from other tenants (which may

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p7

www.tier3.com | 1.877.388.4373 | sales@tier3.com 7

be required in industries such as healthcare) and the

option to upgrade each tenant on its own schedule.

This starts to trend back towards an ASP model,

but well-designed software coupled with a highly

automated application provisioning process can still

make this delivery model sustainable.

•	Have customers share an application (version) but

maintain their own unique databases. In this case,

a single version of software is installed, but each

customer configuration includes a reference to its

own database. Here, physical data segmentation still

exists and features such as per-customer encryption

or direct database tunneling are possible, but overall

application maintenance is simpler.

•	Use a Salesforce.com-like model where all tenants

share both an application version and database.

Data is logical separated, but physical co-mingled.

Surfaced configurations - If someone expected to

rent your software on an as-is basis, with absolutely

no changes, then there is a limited need to expose

user-driven configuration points. However, if you want

customers to have the flexibility to extend the data

model, change the application look-and-feel, define

organization-specific workflows and set up security

users/groups, all in a self-service fashion, then you have

to design your software to support user-driven configura-

tion changes.

APIs - If you aren’t offering APIs, then you aren’t offering

a real cloud-based SaaS application. Applications without

APIs become siloed and more difficult to integrate with

or manage from afar. Good API design requires work,

but the payoff is immense for the customers of the SaaS

application.

Thoughtful security architecture - Security is a major

consideration when building an application that may

be shared by many diverse users. Security issues that

arise include how you identify (authenticate) and assign

permissions (authorize) to users, how you encrypt data

at rest, how you secure data in transmit, provide audit

trails and so forth. Ideally, your application allows Single

Sign On (SSO) through a standard mechanism such as

Security Assertion Markup Language (SAML) which then

requires one fewer password for users to create and

maintain.

Integration with other cloud platforms - While not a

necessity, it’s powerful when cloud applications embrace

other cloud applications. Users of your SaaS applica-

tion might benefit from integration with Google Docs or

Microsoft’s SharePoint Online, for example.

#2 Find the Right Hosting Environment

Creating SaaS-friendly application architecture is a great

first step to business success in the cloud. Next, you

have to deploy it in a way that maximizes reliability while

minimizing support costs. Even a well-architected ap-

plication will flounder if it is stuck in a sub-par hosting

environment. You will want to find a mature Infrastructure-

as-a-Service (IaaS) provider with a mature, elastic

environment that has strong capabilities in the following

areas:

Metered Billing - Pay-as-you-go pricing is a major attrac-

tion of SaaS for clients. You want to make sure that you

can easily capture usage metrics that can factor into the

monthly cost. While you may simply charge a flat price

per application user (and forego chargebacks for indi-

vidual infrastructure costs such as storage, bandwidth

and CPU cycles), it will be useful for your hosting provider

to show you a clean breakdown of the costs associated

with your SaaS application.

Quick horizontal/vertical scale - Increasing RAM or

CPU sometimes makes sense when you need more

horsepower for a given application server. But recall

that “cloud” is associated with easy horizontal scale of

commodity hardware. The platform beneath your SaaS

application needs to be able to scale automatically and

rapidly through a self-service interface.

Access to Web-based installers - Instead of leveraging

virtual machine (VM) snapshots and rehydrating them

when you need more servers, consider building the

servers automatically when scaling is required. If you

use VM snapshots, you still have to deal with patching

and managing them so that they are usable when you

need them. Instead, if you have access to the application

source code (or Web installers for packaged software),

you can use any number of tools to quickly and reliably

build new servers.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p8

www.tier3.com | 1.877.388.4373 | sales@tier3.com 8

Active monitoring - In order to be able to support a large

number of customers on your application, you’ll need to

be able to respond quickly to the inevitable issues that

arise with the hardware or software. Your SaaS hosting

platform needs to be watching the health of its servers

vigorously. The platform needs to be able to notify you of

problems and perform prescribed responses (e.g. reboot

server, take offending server offline, add more servers).

Global deployment options - One value of SaaS soft-

ware is that it’s on the public Internet. This means that the

application may be accessed by users across the globe.

If there’s a chance that your SaaS application would be

used by global users, consider hosting providers that

have an international presence and support provisioning

across global data centers.

One-click provisioning - A cloud application architecture

may not be simple. Your software may have numerous

front end Web servers, a Web service layer, distributed

database system, batch job processing servers and

more. If possible, try and find an Infrastructure-as-a-

Service (IaaS) provider that allows for “templating” a

solution stack and supports a single-click deployment

option.

Robust backup and restore options - Disasters happen.

Even the best cloud environment experiences unex-

pected issues that can take down an entire data center.

You want to make sure that your application data can be

readily (and regularly) persisted in a location outside the

primary data center. Disaster recovery planning is serious

business and ideally, your hosting partner has lots of ex-

perience in this arena and can provide both the thought

leadership and tools that make this a reliable capability.

#3 Provide Registration, Management and
Billing Services

If the application is well built, and hosted on world-

class infrastructure, all that’s left is to make it simple for

customers to consume it. How will you make it easy for

customers to evaluate, buy and get started quickly with

your application? In order to offer a SaaS product that re-

quires minimal manual intervention, you should address

the following areas:

Sign-up pages - This may seem obvious, but you will

want to construct a straightforward way for customers

to get started quickly with your software. If your sign-up

process requires someone to call a phone number, that

is not optimal. It should be a completely browser-based

experience.

Management dashboard – There is a strong business

value in surfacing application configuration details to

allow the customer to make certain changes to the

appearance or functionality of the application. Your

customer shouldn’t have to make these changes by ex-

ecuting a series of shell scripts or REST API calls. Rather,

they must have an effortless way to view and edit config-

urable values. Likewise, a good management dashboard

also exposes key capabilities such as security role defini-

tions (and user provisioning) and billing services.

Data import/export services – Think about how new

clients will migrate old data onto their new instance of

your SaaS application? If your answer is “key it in by

hand,” then you have started the business relationship

with a hassle for the client, one that might be an obstacle

to adoption. Data import tools make it possible to start

using an application right away, and, create some instant

data gravity along the way. Just as important as sup-

porting easy data import capabilities, you need to offer a

way to pull data out of your application. While the natural

inclination may be to lock people into your platform,

you’re both harming your customer and making simple

integration scenarios harder.

#4 Create Application Templates

Unless your SaaS offering is uniform and low-priced,

your setup will be optimal if you let each customer have

its own Web application and database instance but po-

tentially share underlying infrastructure. Each customer

may want to perform some unique customizations that

wouldn’t be shared by all application users. It can be a

challenge, however, to remain efficient while being so

flexible about provisioning. For example, your application

might consist of a database server, fronted by two web

servers, as shown in Figure one. In this case, this configu-

ration would be a “building block” for your SaaS offering.

The question becomes, how can you deploy multiple

blocks with as little friction as possible? Excessive

manual setup can rob your SaaS initiative of profitability.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p9

www.tier3.com | 1.877.388.4373 | sales@tier3.com 9

You can only do this at scale if your SaaS platform has significant automation

capabilities that can handle server scale-out with limited manual intervention.

Some vendors, Tier 3 included, solve this challenge by enabling you to create

templates for your application and deploy by installing servers in groups. With

these tools, you can create a template for your application building blocks

and replicate them as you scale your SaaS deployments. These platforms

let you package a Web application for SaaS provisioning, with environment

automation capabilities that make management of distinct “per customer”

environments entirely manageable. Servers are managed in groups so each

customer will be provisioned into their own group. This makes billing, scale

thresholds, and configuration much more personalized. You can also use

scripts to expedite and automate many maintenance tasks such as OS up-

grades and patching of templated groups of application building blocks.

Let’s consider how one type of cloud orchestration tool can help auto-

mate environment build outs. Using Tier 3’s template technology, you can

turn a server it into a reusable image. The Tier 3 platform refers to this as a

“Blueprint”. It’s easy to model standalone SaaS instances. Figure 2 provides

a simple reference architecture for how Tier 3 brings together multiple two-

tier client “building block” instances with a repository of application template

blueprints and a build engine that automatically creates new instances based

on customer configuration needs. Blueprints can be rapidly deployed by the

Tier 3 build engine to any of our global datacenters.

web server

db server

web server

db server

Figure 2 – A standardized
approach to replicating
applications using templates
and a “build engine”.

management group

web
server

web
server

web server db server

web
server

web
server

db
server

web
server

web
server

db
server

web
server

web
server

db
server

web
server

web
server

db
server

Client instances

service
layer

blueprint
repository

work queue
build

engine

Figure 1 – Standard “two tier”
application architecture as an
example of a building block for
a SaaS deployment.

Figure 3 – The Tier 3 Control
Portal, allowing administrators
to set thresholds for alerts on
application performance.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p10

www.tier3.com | 1.877.388.4373 | sales@tier3.com 10

#5 Monitor Performance and Scale
Environments

While everyone hopes to provision servers that can

withstand whatever load gets sent its way, there often

comes a time to reassess the resources that have been

assigned to the application. Some cloud platforms offer

a range of performance monitors that paint a picture of a

server’s health.

Consider a scenario in which the Web servers should

not exceed 90% CPU for a long duration. Using an online

monitoring tool from the cloud management portal (Tier

3’s is shown below) our SaaS administrator can view the

monitors for an individual Web server and override the

inherited CPU “95% threshold” that come from the group.

Figure 4 – An example of an online monitoring
capability.

The administrator can then change the alert threshold to

90%, and, define which user in the account will receive

the email notification when the threshold is exceeded for

an extended duration. While alert messages are used

for proactive notification, an administrator can also view

reports that track usage compared to monitor thresholds.

If the SaaS administrator observes a sustained spike in

usage and needs to expand the application footprint,

he or she has multiple options. An administrator has the

option of scaling horizontally by adding new servers. This

can be done via the typical server provisioning process

or using cloud orchestration functions. The other option

involves scaling the server vertically by expanding

the server’s available resources. For some operating

systems, such as Windows Server 2008 R2, this capacity

adjustment can occur without taking the server offline.

#6 Perform Data Backups

One of the biggest fears of an application owner is ex-

periencing a major crash and realizing that critical data

is lost and unrecoverable. In the scenario which each

customer has its own environment, the need for a consis-

tent and comprehensive backup strategy is even more

imperative. A few cloud providers perform automatic

daily backups. Make sure that each backup contains the

full state and data of the server. For the most demanding

customers, a rolling fourteen day backup could be in

order. All of this ensures that customers can rest easy

knowing that they only face a minimal data loss in the

case of a catastrophic event.

For many modern Web applications, the applications

servers themselves don’t maintain much (any?) state and

can be added and taken offline with little impact. The

real heart of most applications is the data repository. If a

your customer wants to do database-level backups, they

could choose to manually log into the database server

and backup the critical data. However, that is extremely

time consuming and inefficient. You should choose a

cloud hosting provider that supports custom database

backups via APIs or created by network operations

experts.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

p11

www.tier3.com | 1.877.388.4373 | sales@tier3.com 11

CONCLUSION

As you can see, SaaS-enabling your application involves much more than

just taking an existing software package and pushing it out to a few cloud

servers. In this review of six best practices, we hope we’ve shown you the im-

portance of architecting, automating, managing and supporting your software

in way that makes it both efficient and profitable. Each practice is required for

success on its own, though realistically, they all have to be approached as a

group to get the true benefit of SaaS in your ISV business.

http://www.tier3.com/
mailto:sales%40tier3.com?subject=

